Foot-terrain interaction mechanics for legged robots: Modeling and experimental validation

نویسندگان

  • Liang Ding
  • Haibo Gao
  • Zongquan Deng
  • Jianhu Song
  • Yiqun Liu
  • Guangjun Liu
  • Karl Iagnemma
چکیده

Contact mechanics plays an important role in the design, performance analysis, simulation, and control of legged robots. The Hunt–Crossley model and the Coulomb friction model are often used as black-box models with limited consideration of the properties of the terrain and the feet. This paper analyzes the foot–terrain interaction based on the knowledge of terramechanics and reveals the relationship between the parameters of the conventional models and the terramechanics models. The proposed models are derived in three categories: deformable foot on hard terrain, hard foot on deformable terrain, and deformable foot on deformable terrain. A novel model of tangential forces as the function of displacement is proposed on the basis of an in-depth understanding of the terrain properties. Methods for identifying the model parameters are also developed. Extensive foot–soil interaction experiments have been carried out, and the experimental results validate the high fidelity of the derived models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

Navigation Planning for Legged Robots

As legged robots gain the abilities to walk, run, and balance on more than just flat, obstacle-free floors, they grow closer to fulfilling the potential of legged locomotion shown by biological systems. To truly fulfill this potential these robots must successfully traverse complicated, rough terrain, requiring the robots to step onto or over various features of the environment. Furthermore, wh...

متن کامل

Fast and Adaptive Hopping Height Control of Single-legged Robot

Research on running robots has generally focussed on the steady-state. When the ground has limited foot placement surfaces or there are sudden changes in height then steady-state running is not possible. It becomes necessary to make step-bystep adjustments to place the foot. In this paper a mass-spring-damper model of a robot’s leg is used to develop a hopping controller capable of meeting rapi...

متن کامل

Motion Planning for Legged Robots

Slide 0 In this talk, we present a general trajectory generation scheme for a class of " kinematic " legged robots. The method does not depend upon the number of legs, nor is it based on foot placement concepts. Instead, our method is based on an extension of a nonlinear trajectory generation algorithm for smooth systems to the legged case, where the relevant mechanics are not smooth. Our exten...

متن کامل

Slipping and Tripping Reflexes for Bipedal Robots

Slipping and Tripping Re exes for Bipedal Robots Gary N. Boone and Jessica K. Hodgins Abstract|Many robot applications require legged robots to traverse rough or unmodeled terrain. This paper explores strategies that would enable legged robots to respond to two common types of surface contact error: slipping and tripping. Because of the rapid response required and the di culty of sensing uneven...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013